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- The structure and radial expansion of a retathlstic particle beam are calculated . In the presence
of Coulomb scattering. The beam is assumed to be self-pinched and para,dal , but to have a dis-

‘ tribution in energy.1~For the case In which the beam energy spread is small enough to satisfy
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~31y’, where ~ v~~, y2 1 ~2, and bar denotes average over y. The beam profile Is calculated .
(Continues) ...~~ --

F OOMDD ~~ ~ 1473 £OI ~’ION or ‘ w oV SS ,S O•SOLETE
5 % ) IO 2 - 0 1 4 -  4601

i siCu mlY CLAU,r,CA’ Ios or TNIS NAGS r~~a.’ B.,. S.i.

I

I

~ 

- -  

~~~~~~~~~~~~~~



SECum1 TY CLASSI FICATION OF Ts t $  PAGE (*31.., 0.,. E,u .,.
~~

20. Abstract (Continued)

exactly in this case. If the inequality Is not satisfied, Iow-y par ticles expand faster th an the main
beam, at an exponential rate proportional to (2Th’) ’. Approximate time-dependent solutions,
including Initia l transients, are presented for both cases.
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RADIAL EXPANSION OF A SETS-PINCHED

BEAM WITH DISTRIBUTED ENERGY

I
I. Introduction

An electron or ion beam can propagate through a gaseous medium in

a self-pinched mode , provided that the conductivity of the medium is

high enough to neutralize the beam space charge , but not so high as to

completely neutralize the beam current . If scattering and energy loss

are neglected , the beam propagates in a static equilibrium, with its

transverse kinetic pressure just balancing the magnetic pinch force.

This condition is equivalent to the statement that the mean trans-

verse beam temperature T, i.e. the transverse random kinetic energy

per particle , averaged over all beam particles , takes on the Bennett

value1’2

q ( v )~~~ I
T = Z 0 0 (1.1)

where q is the beam particle charge, (v
i> the mean axial velocity , and

the net currant (beam current less return current).

When weak multiple Couloth scatteri ng by the medium is taken into

account , the beam propa gates in a quasi-static equilibri um. As

scattering adds to the transverse random kinetic energy, the beam ax-

panda adiabatically, so as to maintain the pressure balance condition

(1.1). In the case of a paraxial, monoenergetic beam, with axial
Note : Manuscript submitted November 9, 1978.
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velocity ~c and particle ener gy mc2v, Eq. (1.1) becomes
q~c~ &I0 0 , (1.2)

and it has bean shown that the beam density Nn(r, t) takes on a Bennett

profile3

n(r ,t) = Ci. + r~/a2 (t) ]~ 
‘ (1.3)

and the Bennett radius a (t) expands in accordance with the Nordsi.ck

equa t io&~~
5,

E
-~~~~~ [~n a2 (t) 1 = , (1.~.)

B

where is the rate of increase of transverse kinetic energy per

particle , due to scattering.

An actual propagating beam may be far from nonoenergetic , due

either to initial energy spread produced in accelerating and injecting

the beam, or to energy spread resulting from propagation. The purpose

of this paper is to investigate the structure and expansion rate of a

beam with a distribution of particle energies. The interesti ng effects

arise mainly from the dependence of the Coulomb scattering index

on energy (i.e. on y). For an ultra-relativis tic electron bum with

~ 100, E~ is given approximately by6

& , n  Z ( Z + l ) q2e2
E,~, 

~~~~~ 
~~ 2n (210 Z ’~~~ ), (l.5a)

where n5 and Ze are the density and charg . of scattering nuclei . For

ions or lower energy electrons 4’6, Bn (210 Z~~’~ ) is replaced by

2 
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_
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~ 2n (~~ Z’/~ /mc8’~~ ) ,  i.e.

h im Z(Z + l)q2e2
E~ (hmre )~ mc~~l 

2n ( h Z~”~ /mc~~*)  (1.5b )

where a is the Bohr radius. In any event, ~ i~~ for relativistic

particles (neglecting both the deviation of ~ from unity and the possi-

ble weak logarithmic dependence on y). Thus one expects low energy

particles to spread to the outside of the pinched beam and expand more

rapidly. It is by no means obvious a priori how to average over V to

arrive at a mean expansion rate for the beam as a whole, or even if

such a rate is well defined.

In the rest of this introduction, we shall summarize the main

assumptions and results of the paper. Our assumptions are similar to

those of previous treatments3’5, viz:

(i) Paraxial beam, i.e. transverse velocities small compared to

the axial velocity ~c. In conventional relativistic beam terminology,

this means low ~~~ u /V ~ I~ (1.7 X 10’ ~v amsp) , where 10 is the ~~~

current characterizing the pinch force.

(ii) Azimuthal symmetry.

(iii) No external magnetic field.

(iv ) Seam subject to small-angle multiple elastic scattering 
~

fl~j  medium, but collisions between beam particles are neglected
(usually a very well satisfied assumption) . Thus there is no reason

to expect differe nt energy components of the beam to be in overall

-_ ~~~

. . thermodynami c equilibrium at a common temperature .

(v) An initial ener gy s~~ead is ass~.mmd, but the energy of any

particular beam particle is assume d constant in tim e. Most of our

results can easily be modified to include determin istic energy

3
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losses, e.g. due to multiple inelastic Coulomb collisions, or to self-

generated inductive electric fields that drive return currents in the

resistive medium (known as Ohmic losses). In an ultra-relativistic

electron beam (V ~ 100), bremsstrahlung emission becomes a dominant

energy loss process, and also leads to a rapid spreading of the energy

distribution, which is called “straggling”. The ma thematical complex-

Lties of treating straggling self-consistently with radial beam expan-

sion are not addressed in this paper, but qualitative insights into

this self-consistent problem can be obtained by using an initial energy

distribution that is appropriate for a straggled beam.

(vi) Uniform fractional neutralization of beam space charge and

current, i.e. if Jb (r,t)8c and Jb(r,t) are the beam charge and

current density, then it is assumed that a charge density - aEJb (r,t)/
~
c

and a current density - (YMJb
(r,t) occur in the medium, where and

are constants. Typically ch*rge neutralizat ion is complete , a~ = I

(except at the beam head in a neutral gas), while current neutraliza-

tion is partial , 0 � < 1.

(vii) Quasi-static 
____ 

equilibrium, i.e. radial beam expansion

slow compared to individual particle oscillat ions in the pinch field.

(viii) Isotro pic ~~~ isotherma l velocity distributions , for beam

~~~~~~ part icles with particular yam s ~~ V, are assumed in deriving fluid

equations from the Sottzmenn equation.

Our principa l results are as follows . In Sec. h A  we derive a

set of fluid equations for the beam , and in Sac. II B we find an exact

solution of these equa t ions , provided that the beam energy spr •ad is

14.
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small enough to satisfy

~
/EV < 2 , (l.6a)

i.e. approximately,

(l.6b)

for all beam particles, where a bar indicates average over V. In this

case , the radial profile of particles with energy V takes the form

n
~
(r,t)  (NV/TTa

2)[G(r/a(t))1EIIE V (l.7a )

~ (~(.~/Tta~ ) [G( r /a( t ))i ’1
~~’ 

, (l.7b)

where a(t) is a characteristic radius for the whole beam, G(r/a(t)) is

a V —independent function with G(O) = 1, the a
V(t) are characteristic

radii for different values of V, defined by

TTa
V (t)n V (O ,t) 

~ J’ dr2nrn
~

(r,t) 
~ 
N
V , (1.8)

and N
V is the distribution over V. normalized to unity. The ratio

a
V
(t)/a

V
s (t) is time-independent, for any values of V and V ’, and all

of the a
VI as well as a , expand as

dt a 
~~T ’  (1.9)

with T3 given by Eq. The beam thus expands in a completely

self-similar fashion. Numerical solutions for the function G(r/a) are
found ; if the condition (1.6) is well satisfied, G is close to the

Bennett distribution.

5
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In Sec. IIC, exact solutions of the Boltzmann equation are found

for high V particles, which are localized near the beam axis, where the

pinch force is harmonic, The haru~ nic form of the pinch force implies

that n
V
(r) is Gaussian.

In Sec. lILA a different approach is used to derive envelope

equations for the a
V 
from the single particle equations of motion. In

Sec. 1113, thes. equations are used to show that low-V particles which

violate Eq. (1.6) (typically such particles would constitute a low-

amplitude tail of the energy distribution N at low V) expand,

asymptotically in time, at an exponential rate faster than that of the

beam as a whole,

E

~~~ n 5
f

(t) = . (1.10)

Thus, given enough t ime, these particles “evapora te” from the beam,

leaving behind a reduced-current beam that expands completely self-

similarly (if no further straggling occurs).

In Sec. IV , we derive approximate models that specify the time

dependence of the a (t) , given any initial conditions. We examine the

approach to the completely self-similar solution if (1.6) is satisfied,

as well as the approach to the asymptotic solution (1.10) for particles

that violate (1.6). Numerical solutions are given for some particular

cases. We find that the approach to the time-asymptotic state takes

a time tb~at is typically several times the characteris tic time scale

t3/E. Thus transient effects can be important. Equation (1.9) ii found

~~~~~~ to be reasonably accurate, even during the transient period.

6
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II. Kinetic and Hydrodynamic Treatment

A. Fundamental Equations

We begin our discussion in this section with the Boltzmann

equation for the transverse dynamics of a self-pinched beam propagating

in a gas ,

+ v - (2.1)

where f
~

(r,v,t) is the beam distribution over radial position r, traits-

verse velocity v , and relativistic energy nc2V. Azimuthal symmetry is

assumed throughout . The right hand side of (2.1) has the form of a

velocity space diffusion, due to the effect of multiple small—angle

Coulomb scattering of beam particles off gas atoms,with the quantity

given by Eq. (1.5). The distribution f
~
(r,v,t) is normalized so

that

1%
~~

(
~~

, t)  = ,~
‘ d2vf~(r ,v~t) (2.2)

is the spatial distribution of beam particles with energy IIIC2 V (per

unit v),

~~ 
dr2TTrn

~
(r ,t) (2 .3)

is the distribution of beam particles over ‘1, assumed in this paper

to be t ime independent, and

,~

‘ d
~tlV = 1. (2.li.)

7 
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We also define a spatial distribution for the whole beam

n(r ,t) n d
~~ V

(r ,t) .  (2 . 5)

The magnetic self-pinch force (as well as any electrostatic force due

to unneutralized beam space charge) is characterized by the betatron

frequency w~(r,t), defined by

q~cp I(r ,t)
(2.6)

where l(r,t) is the effective net current flowing within radius r,

defined by

I(r ,t) = [(1 — O~4
) - ~~~2 

~ 
- 

~~~
(2.7)

(1 - a) 1b (r ,t)

where

I.0 (r ,t)  ~ L0 ( , t) !
r d~~~~n(r t) (2.8)

is the beam currant within radius r, and we define also

~ I(r , t) .  (2.9)

Since collisions between beam particles are neglected, different V

components of the beam will not come into mutual thermal equilibrium;

these different components are, however, coupled through the nonlinear

term in (2.1) involving the pinch w~
2.

- ;  
. By taking velocity moments of Eq. (2.1) (and assuming

isotropy), we arrive at the hydrodynamic equations,

8

I 
-

- - ~~~~~~~~~ _S5_~~. . - -  -— -—- S. ~~~. - - -
— __5~_ , -- —~~---- — -- — ~~~~~~~~~~~~~~~ -~~—.-—-- . -~ — — -.----——_~~~~~-—-- .--——- ,— -— -



——---5--—.— ,
~

_
~_

__•____
~
_ ~ ___ 5_5--~~~ — -- — — - - -

- -

l b+ — 

~~~ ~~~~~~ = 0 , (2.10)

I b v  bP
mnv Nn (

~ 
-

~~

-

~~~ 

+ V V -
~

_
~
) = - my w~

2rNn~ - , (2. 11)

b
+ I r- (rP~,V )  + —

~~ ~~~
— (rV )  + ~~ - 

~~~~ 
(r Q )  = E N n , (2 .12)

where V
V~ ~V 

and are the flow velocity, pressure, and heat flow for

- 
particles with a given V, defined by

ZV
(r ,t) nJ ’ d2 v v  f

V
(r,

~
,t)/n

V
(r ,t) (2.13a)

P V (r ,t)  e d2 v~~ my L v - V(r~ t) ]2 Nf~ (r~v ,t)  (2.l3b)

QV(r ,t)  m d2 v m’~’ (v - V) 2 (v - V)Nf ~ (r ,~~, t). (2.13c)

N is the total number of beam particles per unit length, and we also

define a temperature T
V

(r ,t) by

~~V
(r,t) = PV(r ,t)/ nV(r ,t) (2.l3d)

Following previous treatments of beam expansion3, we assume

that TV(r ,t) = T
V(t) is spatially uniform (i.e. the beam particles

with any given V are isothermal)1 and look for similarity solutions

of the form

0
~

(r ,t) = 

rr a 2 ~~ (ay~t)) 
(2 .15)

It follows from Eqs. (2.10) and (2.15) tha t the radial expansion is

- - 
uniform, i.e.

9
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~ (t)
V~(r~t) = a,~,(t) 

r,

and Eqs. (2.11) and (2.12) reduce to the following form:

. 1 (t)
T~(t) ~~

— n~(r~t) + miw~
2 (r~ t)rn~ (r ,t) = _m~n~(r~t)r a

’1
(t) (2.16)

L (t)
T~(t) +2T (t) ‘1

(t) 
- E

~~
=O .  (2.17)

We conside r only the case of quasi-static equilibrium , in

which is short compared to the scattering time scale T / E ~~ flow

velocities are small compared to internal velocities, and the right

hand side of Eq. (2.16) can be neglected. The hydrodynamic equations

then reduce to

T~(t) ~~ 
n~(r,t)+ mVw~

2(r,t)r n~(r~t) = 0, (2.18)

. & ( t)
TV

(t) + 2T~ (t) 
a~,(t) 

- = 0 , (2.19)

with w
a
2(r,t) coupled co the through Eq. (2.6), and subject to the

boundary condition (2.3). Equation (2.18) is simply transverse

pressure balance, while Eq. (2.19) is the adiabatic expansion law,

with the second term being NV work and the third term the rate of

* Two comments are appropriate hers . For r far outside the main beam,
WA 0 , and for those few electrons that scatter out to this region,
the dynamics is dominated by scatteri ng rathe r than by the pinch
force. Also, in dropping the right hand side of (2 .16), we are also
neglecting radial oscillat ions of a~ (sausage mode) which occur if thebeam is injected out of dynamic equilibrium.

10
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energy input to the transverse p lans , due to scatt ering .

Equations (2.18) and (2.19) have been solved in closed form

for the special case of a monoenergetic beam3, with the result

q~c p. I
0 0

L L B ‘

n(r ,t) = + ad(t) 
~ 

2 
(2.21)

øn a~ = t . (2.22)
B

Equation (2.20 ) is the well known Bennett pinch condition1’2, Eq.

(2.21) is the Bennett profile, while (2.22) is the Nordsieck equa-

tion. This simple solution (2.21), (2.22) is possible in the mono-

energetic case only because the problem is not complicated by the

coupling of different values of V. In the general case , it can still

be shown2 directly from the hydrodynamic equations (2.18) and (2.19)

that the Bennett condition holds for an averaged T,

zJ ’ d
~
N
V
T
V(t) = TB, (2.23)

but there is no simple, general way to calculate the temperature

of the separate y components, i.e. the total internal energy is fixed

by pressure balance with the magnetic pinch force , but energy can be

apportioned among the various V components in a way that depend s on

the detailed evolution.

B. Completely Self-Similar Expansion

In this section , we demonstrate that , provided tk energy

distribution N~ satisfies a condition that will be specified, Eqs.

11 
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(2.18) and (2.19) have solut ions that corresp ond to complete ly self-

similar beam expansion, i.e. the profiles n~(r ,t) take the form

n~(r~t) = n~(r/a(t)), (2.211)

where a is a ~-ind.pendent radius that characterizes the beam as a

whole, and the temperatures TV remain constant,

Ty =:O. (2.2 5)

Equation (2.19) then reduces to

T~ ~
4
~~n a2 = ~~~~~ (2.26)

and to satisfy Eq. (2.23),

T
V 

= TBEV /E . (2.27)

Equation (2.26) can thus be rewritten as

~
4

~~2n a 2 = !;  (2.28)

where TB is the Bennett relation, Eq. (1.2), and ~ is the average over

~i of ~~ given by Eq. (1 .5) .  Equation (2.28) is a generalized

Nordsieck equation that follows exactly from the hydrodynamic equa-

tions (2.18) and (2.19) and the assumptions (2.211~) and (2.25) .

r To solve for the density profiles n~(r/a), we first rewrite

Eq. (2.18) in the form

I: T x dn

~~(x)dx = - myr2w~ (x) = 
~
‘ITB ~fL~ , (2.29)

V 0

-- - ~~~~~~~~~~~~~~~~~~ 
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where x is the dimensionless variable n a , and we make use of Eqs.

(2.6) and (1.2). We note that the right hand side of (2.29) is inde-

pendent of V. Therefore it must be possible to define a function G(x)

such that

— T dn
(230)G dx n~ dx

We immediately obtain the universal form

n~(x) = C~EG(x)1
T/T

V = C~[G(xfl~~~v . (2.31)

Since Eq. (2.30) only specifies C to within a multiplicative constant,

we choose to require

} G(0 ) = 1; (2.32)

Eq. (2.31) may then be rewritten as

n~(x) = ~~~~~ LG(x)l~
’E
V • (2.33)

Next we rewrite Eqs. (2.29) and (2.30) in the form

2 4, i(~)
Cdx — - i (~~~ 3 )

0

and write a differential form connecting 1(x) to G(x),

~ = .1’ d ,n (x) = 2 !_~~ j
~ 
d~tVG(x))~~

Ey. (2.35 )

_ _  - 
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Integrati ng (2.33) over x yields an equation for the a,, ,

= 2 dx x [G(x)]~ ’~~y . (2.36)

The coupled equations (3.34) - (3 .36), with the boundary conditions

(3.32) and

~ 0 (2.37)

Lw*~ich is equivalent to I(x)x x
2 for x - 01, speci fy G and the a~ (up

to a scale factor in the radius), given any energy distribution N~.

For a moriotonic energy distribution, N~ = N6(V-l/~~~), the Bennett

profile is a solution of these equations; in more general cases,

numerical solution is required. Before presenting some numerical

solutions, we discuss some general properties of the solutions.

The procedure just described is self-consistent if it is

possible to normelize the resulting n~(r)1 i.e. to satisfy Eq. (2.36).

This requires that [c(x)]EIEV 0 faster than x 2 , for large x. Now

according to Eq. (2.34),

G(x)~ x
4, for x ~~, (2.42)

and thus the results are self-consistent if

E/E
~~

1w ?Ty>* (2.43)

for all V. If (2.43) is not satisfied, there is no completely self—

similar solution, i.e. the conditions (2.24) and (2 .25) cannot be

imposed.

111.
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Equation (2.33) in itself gives considerable insight into

-
- the nature of the solution, and what happens when the assumption of

1 completely self-similar expansion breaks down. Consider first the

case v (~~~1) >> 1. For r << a, C must have the form

- G(r/a) ~ 1 - r
2/r 2, (2.44)

- and thus

n~(r) r 2 exp 
( 

- ~ 
V (2.45)

for V <y ~~> >> 1. Thus high V particles are tightly confined near the

beam axis , in a Gaussian profile, whose width a~ scales as ~~~i/2~ For

- VV- l l,

-

. n
V
(r) = (N

VftTaV
2)G(n/a) (2.11.6)

- falls off as r 4 at large r, like the Bennett profile; in fact the

- numerical solutions indicate that C is close to the Bennett profile,

- if the condition (2.43) for the existence of a completely self-similar

solution is well satisfied. For V (~~~
) ~~, a 1 /a ~~, because the

- 
profile n

V
(r) sprouts a long wing at large r, which cannot be normal-

ized. This is indicative tha t particles with V <~~ would even-

tually leak into the wing, and spread to n/a ~; i.e. such particles

would expand at a rate faster than the beam as a whole , making a

completely self-similar solution impossible. One might expect , how-

• ever , that the remaining beam would expand self-similarly, after all

. of the low V particles have “evaporated” to large r.

-  
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To perform the numerical solution of Eqs. (2.55) and (2 .56) ,

we first discretize the energy distribution NV,

N t N 6(V-V1). (2.11-7)V

We then start with an initial guess for the aV 
and solve (2.34) and

(2.35) , which are now reduced to a coupled set of ordinary differen-

tial equations with boundary conditions (2.32) and (2.37), by the Runge-

Kutta method . We then use (2.36) to evaluate new values of the a~,

and iterate this procedure until convergence occurs. It is convenient

to choose the values of a~, for a Bennett profile G as the initial

guesses , i.e.

/ (0)\2la V i  dxx 1
\—r-/ = 2 

~1O (1 + x2)
2E
~~V 

2E/E 
I

1 (2.48)

This procedure usually leads to rapid convergence. In fact, the final

G(x) is quite close to the Bennett shape , unless the N V are such as to

be close to violating the requirement (2.11-5). This is not surprising,

since G(x) is constrained to fall off as at x

The form of G(x) is exhibited in Fig. 1, for four different

two-level (j = 2) energy distributions, suim~ nized as cases 2-5 of

Table 1. Several other features of the results are shown in Fig. 2-4.

Figure 2 shows the ratio of radii, a1/a2, as a function of V1/V2 and

~~ 
(compared to the results of two approximate models discussed in

shows profiles of the total beam, n(r) = n1(r) + n2(r).

~~~ Sec. III). Figure 3 shows profiles of n1(r) and n2(r), while Fig. II.

16
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To sumeitrize the results of this section , we have produced

an exact, complete ly self-similar solution to the radial beam dynamics,

which holds if and only if the condition (2.43) is satisfied. We have

not yet considered the time evolution that follows from an arbitrary

initial specification of n
V
(r), nor the evolution that occurs if the

energy spectrum N~, is such as to violate (2.43) for some values of V.

In Secs. III and IV, we shall use approximate models Cenvelope equs-

tions based on assume d forms of nV
(r) ] to attack these pr oblems . We

conclude there that the beam, with arbitrary initial conditions, does

evolve toward the completely self-similar solution if (2.43) is

satisfied.

17
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C. Harmonic )~gnstic Pinch and Gaus sian Profiles

In this section, we consider the consequences of assuming

that the magnetic pinch force -cn~w~(r,t)r is simple harmonic, i.e.

that w~
2(r,t) is independent of r. This assumption is well satisfied

near the beam axis , where the current density becomes uniform spa-

tially. We shall find exact solutions of the Boltzmann equation, and

demonstrate explicitly that the distribution f
~

(r ,v,t) is isotropic

and isothermal; these properties were only assumed in deriving the

hydz-odynamic equations of Sec. hA.

For an r-independent w~(t), a function of the form

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(2.49)

is an exact solution of the Boltzmann equation (2.1), provided that

the coefficients 
~~~~~~~~ 

and 
~c 

satisfy the ordinary differentia l

equations ,

~~v
0
~i~ c.

4 E.,~~
2 = 0, (2 .50a)

— 

~~B
W
B~r 

+ + 
~~ B 8c — (2.50b)

+ 
~c 

— W
~
28r + 2Ew~~~8 + ~~2 — o, (2.50c)

and M(t ) is given by the normalization ,

NV = 5 dr2iTr 5 d2 .z Yz ,.z,t) . (2.~~d)

I 

G iven any set of initial conditions er(0),
~v

(O)
~ 
ec(o)i the solution

~ 4ri -~~
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is determined thereafter by Eqs. (2.50). However the initial values

must satisfy the constraint -

~r~° v~°~ 
> ~~~2 (Ø) (2.51)

in order to permit the normalization of Eq. (2.50d). Any superposition

of such solutions is also a solution, since the Boltzmann equation with

a prescribed pinch force is linear in f(r,v,t).

The spatial profile determined by these solutions is

Gaussian,

5V(~~
t) — exp (_r2/a

~
2(t)). (2.52)

where

aV (t) 
{~~~~~~r

(t
~~v

tt) 
~c~~)1} ’ (2.53)

The temperature T
V 
is spatially uniform,

T
V
(t) = l/p (t), (2.511-)

and the distribution over internal velocity w is isotropic, justifying

the definition of a pressure and the neglect of heat flwc. Thus

these solutions satisfy all of the assumptions made in deriving the

hydrodynamic equations in Sec. lilA. Using (2.54) in the pressure

balance equation (2.18), we find that T
V 
is related to w through

T
V
(t) *mMu

~
2a

V
2(t). (2.55)

19
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The assumption made in this section, that is independent

of z-, is only valid for the high V beam particles, which are localized

well within the characteristic beam radius aCt). It is tempting to

try to develop an approximate theory by extending this assumption to

all beam particles , e.g. by choosing an “average ” spatia lly independent

by requiring

= (myw~(r)r2) .
. (2. 56)

With this prescription, Eq. (3.18) reduces to

2~~~~a~
2 

~~~~~ ~~~ a
2
~~~~~~ ~~~ (2.57)

Averaging (2.57) over V yields a generalized Nordsieck equation,

d 2 E‘~~ n a  ~~~~~~~
— , (2.58)
B

and using (2.58) in (2.57) gives an expression for the time dependence

of a
V
(t), given arbitrary initial values

L~V
(0) - ~~ a

2(O)] exp 
(~~~

)+ ~~ a
2(O)exp
(
~~). (2.59)

Equation (2.58) is indeed the correct generalized Nordsieck

equation, derived exactly in Sec. IIB [if Eq. (2.43) is satisfiedl.

Equation (2.59), however , points up the deficiencies of this approxi-

mate model. The first term of (2.59) is a transient, arising out of

— 
the initial conditions. The second term, which dominates for

- 

- t >> t3/~, represents a completely self-similar beam expansion, with

_ _  ~~~~~~~~~~~ 
_ _

_ __ _ _
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all. V components expanding at the same exponential rate and such that

a 2 E
_.Y~ ~~~~~~ (2.60)a s  E s  V

Both Eq. (2.60) and the time scale for the decay of transients , Eq.

(2.59), are essentially correct for particles with V ~~ H~> 1. But

as we have seen in Sec. IIB , such a self-similar expansion can only

hold for values of V that satisfy Eq. (2.43). The model thus fails

for low V part icles; it is the very fact that the pinch force is not

harmonic, but rather falls off for large r, that allows these particles

to expand faster than the main beam. To calculate the time dependence

of aV(t) for all V, we need a more sophisticated envelope equation

(i.e. equation for a~,) that models the pinch force more realistically.

Approximate models of this type are developed in Secs. III and IV.

21
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III Envelope Equations

A. Derivation and Genera l Remarks

In Sec. II , we found an exact solu~~ on of the hydrodynamic

equations for the beam profiles n
~~

(r , t)  and for the radial expansion

rate. However the solution applied only when a restriction on the

breadth of the energy distr ibution , Eq. (2.43), was satisfied . Further-

more, the solution applied only when the initial conditions happened

to coincide with the specified form. In order to find n V(r ,t)  with

complete generality, it would be necessary to solve the general. initial

value problem of the hydrodynamic equations (2. 18) and (2.19) . We do

not undertake to do that in this paper. Instead , we reduce the diffi-

culty of the problem by going to a lower level of description. In

this section, we derive envelope equations, i.e. equations determining

the evolution of the characteristic radii a
V 
for beam particles with a

given value of V. In order to specify the coefficients in the envelope

equations , it wi,,ll be necessary to assume specific functional forms for

the Q
V

(r , t) . Thus we obtain approximate envelope equations . However

we are able to benchmark these approximate models agains t the exact

solutions of Sec. hIB, in the regime where those solutions are valid.

We are also able to solve the initial value problem for the envelope

equations more genera lly. The results strongly indicate that the

exact , completely self-similar solution of Sec. IIB is the t ime—

asymptotic limit for any initial conditions, provided that the con-

j  dition (2.43) is satisfied. Solutions are also found when (2.43) is

not satisfied. In these cases, the low-v particles expand more

rapidly than the main beam.

r 1  - 
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Our starting point here is the single-particle equation of

motion, and our derivation follows that of Lee and Cooper4 for a mono-

energetic beam. Under the assumptions (i-vi) of Sec. I , the equation

of motion of a beam particle in the transverse plane is

~? + w~
2(r,t )r -  = 6F/mV , (3.1)

where the betatron frequency is defined in Eq. (2.6), and 6F is the

rapidly fluctuating stockastic force associated with Coulomb scatter-

ing off atoms in the medium. By taking the product of Eq. (3.1) with

• either r or I, and averaging locally over the transverse velocities ~

of beam particles with a given value of V located in an annular volume

element between and r and r + dr (denoted by (. ‘>.), we arrive at the

two equations

w 2 — —
~~ (3 2)dt dt  ~~~~~~mV ‘

~~ < d 2r2 ) .  - V 2 + w 2r2 
0, (3.3)r

where V(r,t) is the mean or fluid velocity at r,

d~~~~~~b + b
dt bt

and E
V 
is the rate of energy transfer to transverse motion due to

• 
- scattering, given by Eq. (1.5). Eliminating V from Eqs. (3.2) and

~~~~~~ - 

( 3 . 5 ) ,  we arrive at

( c!~: 
)~ + ( ~~ w~~r 2 )~ + ( ~~ ) j  . ( 3 .4)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - _________ 
- 
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Next we make the assumption tha t the beam is in quasi-static equili-

brium, i.e. that

n 2  2
( d r  

). _. ~~_ < < w
n
r2 

(3.5)
d~ n r

mac

where t is a time characterizing macroscopic beam radial motion. This - 
-mac

assumption means essentially that the macroscopic transverse beam dynam-

ics is determined to lowest order by a balance between the transverse

kinetic pressure and the magnetic pinch, with the scattering term on

the right hand side of (3.4) leading to adiabatic beam expansion at a

rate slow compared to individual particle oscillations. The first

term on the left hand side of (3.4) is thus negligible*, and we com-

plete the derivation by averaging also over position r. We obtain

~~~~. ( ~~~2~2 ) + ( ~~~ 2 
~~~ ) = —

~~~~~~, (3.6)

where (•~~) henceforth indicates an average over (both position and

* This assumption always fails for r large enough, since the first
term in (5.4) -. r2, while the other terms constant as r — 

~~~. This
is indicative that the pinch force becomes weak for beam particles
that are far enough outside the main beam, and the dynamics of these
particles is dominated by scattering, rather than by an equilibrium
between pressure and pinch force. Thus the self-similar profiles used
later are incorrect at large r -- the beam profile must approach a
Gaussian shape in this region (but only at very late times). Never-
theless, the first term in (3.4) can be dropped, without significantly
affecting the results in the region inside or fairly near the main
beam. Once this is done, profiles such as the Bennett profile are
admiseable, even though they would cause the first term to diverge,
because they fall off too slowly at r -

~~

,-~ ~~‘
-

L5-. 24
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velocity of) all beam particles with energy ~~~, i.e. for any f~mction

g(r,t),

< g(r ,t) ) 
~ 

N 1 J’ dr2Trrn~ (r ,t)g(r ,t). (3.7)

To proceed further , we shall assume that the functions

n
V
(t’
~
,t) are of the form

= n V (a V~t))  (3.8)

i.e. that the beam particles with any single value of V expand self-

similarly. This is a much weaker assumption than the assumption made

in Sec. IIB that the whole beam expands self-similarly, and we expect

(3.8) to have a much broader realm of validity (e.g. when low V

particles expand faster than the main beam components). The charac-

• teristic beam radii a
V
(t) are conveniently defined by*

NV 
C 

~~~ 
dr2nru

V
(r,t) = ITa

V (t)nV
(O,t), (3.9)

and it will also be convenient later to define a characteristic radius

a for the whole beam analogous ly ,

1 ‘ j~~ 
dr2n-rn(r,t) = rIa2 ( t )n(0 ,t ) ,  (3.10)

where n(r ,t) is defined in Eq. (2.5). It follows from Eq. (3.8) that

• ( g(r ,t)~~ ~~~ ) = ( g(r ,t) ) ~~ a , (3.11)

• * As noted previous ly , it ii not always possible to define a as a
root-mean-square radius. V

25
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for any fimctioa g(r,t). Thus Eq. (3. 6) reduce to

~ ( ~~~2~2 ) + ( ~~~2~2 ) 
~~~

øn a
~ ~~~~~~~~~

. (3.12)

We also note, from Eqs. (2.6) -- (2.9), and (2.20), that

mMU~
2r2 = Z1-T

3 J~ 
dr’2r1r’n(r’,t), (3.13)

and thus rewrite Eq. (3.12) in the two equivalent forms

~~ 
D ,,(t) + D

V
(t) fr [~n a~

2 (t)1 = 
~~~~~

— (3.IJI-a)

or

DV
(t) ~~~n [DV

(t)a
V
2(t)J 

~~~~~~~

- , (3.141,)

where

D
V
(t) N.,~7

1 J ’ dr2rrrnV (r/a (t)) j~~ 
dr’21ir’n(r’,t) (3.l5a)

= N~~’ ~~~~ 
dr2rvrn

~
(r/a (t)) j~~ dr

’2TTr’
~
’dV’nV

, (r’/a
V

s’(t)).(3.15b)

Equation (3.14) is an envelope equation determining the evolution of

a V( t),  once the coefficients D V(t) are determined.

B. Small ‘1 and Large V Limits

Before making further assumptions to determine the coeffi-

cients D
V
(t), we consider the limits of small V and large V. As in

Sec. IIB, small V viii mean 2v ~~~ < 1, while large V will mean

V 1. We expect, as indicated in Sec. El, that particles with

large V are confined to radii well inside a, while those with small

~~~~~ I
~‘ 1 26
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‘1 spread to well outside a (after an initial transient period) . Thus ,

for small V,

• D V( t)  ~ 1, (3, l6a )

and Eq. (3.14) reduces to a generalized Nordsieck equation

d~~
n a V =~~~ 

(3. 16b )

for small-V particles. We note that the expansion is exponential, at

a rate inversely proportional (through TB) to the total net current

I , but inversely proportional (through EQ to the particular V of the

particles. Comparing with Eq. (2.28), we expect the beam as a whole to

expand roughly exponentially at a rate ?/T3. Thus low-V particles,

i.e. those with E
V
> 2? or V ~ j -, expand more rapidly, and the

ratio a
V
(t)/a(t) increases without limit.

Next we consider the limit of large V. Since these particles

are confined near the beam axis, we can take

n(r,t) ~ l/na2(t), (3.17)

i.e. the pinch force is simple harmonic in this region. As shown in 
J

Sec~. IIC, this implies that

i~a~~(t) 
exp (

~ 
;:— 5-

) 
; (3.18)

hence

( r2 ) a
V
2. (3.19)
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We do not need to use Eq. (3.18) here, but we do use the fact that

( r2 > is finite, Eq. (3.19). Using (3.17) in (3.l5a) , we then find

D
V
(t) 

~ 
a
~~
(t)/a (t). (3.20)

Equation (3.14) then has a solution with

a 2 (t) E
= , (3.21)a 

~~~~
‘ 2T —~~n a 2

B dt

i.e. the large-V beam components expand at essentially the same rate

as the main beam, but their characteristic radii scale as E
V
1/2, i.e.

as V~~’2.

C. A~~roximate Envelope Equation Model

En order to ev*luate the coefficients D
V(t) in the envelope

equation (3.14), without knowing the general form of the profiles

n
V
(r), we shall consider some ad hoc assumed forms for n

V(r). The

validi ty of these assumptions can be tested, to some extent, by com-

parison with the exact , completely self-similar solution of Sec. 113,

which hold when condition (2.43) is satisfied.

We consider three very different self-similar forms

nv
(1 /a V

(t )):

(Case i) 
~V

(r , t) = TTa V (t) exp 
( 

a,7(t)) ’ 
(3. 22a)

Case ii) nV
(
~

, t)  
~a~~~t (‘ 4 4

~~~Y )’  
(3.22b )
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N / ~~~~ \-l-r 2(t)/a 2(t)
(Case iii) n

V
(r,t) a (t) (

~ 
+ 

r
2

(t ))  

0 V (3.22c)

Case (i) is the Gaussian profile, correct for large V. Case (ii) is

the Bennett profile , correct for a mono-energetic beam3. Case (iii)

was chosen by analogy with the exact self-similar solution (2.33) with

the approximation G(x) = (I + r2/r 212 , the Bennett form. The expo-

nent used in Eq. (3.22c) is required to satis fy the normalization (2.3).

The parameter r (t) is a V-independent radius, which is left arbitrary;

the resulting envelope equations turn out to be independent of the

choice of r (t).0

Most remarkably, all three cases share the property that

a 2
• D

V
(t) = J’ dy ’ N V ? a 2 a ’ 2 (3.23)

• The generality of this results tempts one to speculate that it is a

general consequence of all profiles of the form n
~

(r/a
~

(t) . The

reader is warned that this is not so.

Using (3.23) is (3.14), we obtain an integral-differential

equat ion for a V
2 d 2 E

dV ’ N
V

? a 
V
a ,  2 + —

~ — ! dv ’ N
~

s a
~

2 + a
~

12 (3.24a )

or 

? dv ’ 
~~~ a~ 

:va , ~ ~~~2n ! dV’N v l a
~

2 :v,
~~~~ 2 = (3.24b)

We look first for solutions of (3.24) that are completely

• self-similar , i.e. such that the ratio a
~

/a
~

? is constant in time, or

29
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equivalently

~n a~
2 = Liz a2 , for all y. (3.25)

Equation (3.24) then reduces to

dv’N~, a :~~~~ ~~ Ln a2 
= ~~— . (3.26) 

-

‘

Multiplying by N
V and integrating, we find

d L n a 2 
~~~~~~~ a = 

d 
~~~~ ~dV N 

~ 
dV ’ N i

1-~~~~2n a  
~~~~

- .

Thus we arrive at the same generalized Nordsieck equation derived

exactly in Sec. 113,

(3.27)

which helps to establish our confidence in the assumptions (3.22) that

led to Eq. (3.23). Using (3.27) in (3.26) , we find

a 2 E

S 
dv’N

~
, a~~~a~~ 

= . (3.28)

The integral equation (3 28) determines the relative magnitude of the

various a~
. For example, if the energy distribution N

~ 
is discretized,

J

N = E N 5(V- V4 ) ,  (3.29)*1 ~=1 i
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then Eq. (3.28) becomes a set of j  algebraic equations (one of which is

redundant),

Nk ~~~~~~~ 
= 

~ 
, (3.30)

that determine the j-l unknowns a2/a 1, a31a 1,... ,a 1/a 1. Also, a1 is
determined by its initial value and Eq. (3.27).

Since the left hand side of Eq. (3.28) or (3.30) is less

tha n unity , a necessary condition for the existence of a completely
self-similar solution of Eq. (3.24) is

31
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V > f r ,  for all V. - (3.31)

We proved in Sec. 113 tha t condition (3.31) is both necessary and suffi-

cient for—a~completely self—similar exact solution of the hydrodynamic

equations. However , Eq. (3. 31) is not sufficient within the framework

of the approximate model , Eq. (3.24) . This indicates a defect in the

approximate model, which , we find , agrees well with the exact solution

if (3.31) is well satisfied.

To illustrate this , we cons ider a two level discrete energy

distribution , j  = 2 in Eq. (3.29), as we did in Sec. 113. Equations

(3.30) can then be solved for a2/a1, with the result

a 2 ? + E  - E 2 (2-N ) - E / ~~
a2 

— 

- + E
2 

— 
(2-N1) - E

1~

The condition for the solution to be physical is that a1
2/a2

2 be posi-

t ive and finite, which requires that

E~~~~~wr 1
E V Vl > 2 N  3.33

1 1

if V1 < V2. Comparing with Eq. (3.31), we see that (3.33) is a stronger

requirement. Solutions of Eq. (3.32) have been plotted in Fig. 2, as

well as plots of a1i~~ from the exact theory of Sec. 113. We see that

agreement between the two is good where (3.33) is well satisfied.

This is to be expected , since we showed in Sec. IIB that the exact

form of n
~

(r ,t) = ~~~~E CG(r/a)]~
’EV is close to one of the approxi te

32
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forms , Eq. (3.22c), that leads to the present model. However, near the

region of breakdown of the completely self-similar solution, the value

of a
1i~~ 

is evidently sensitive to features of the profile n
~

(r ,t) that

cannot be modeled as in E q. (3.22c).

We turn next to the general initial value problem for Eqs .

(3.24), given arbitrary initial va lues for av. When N V is discretized ,

as in Eq. (3.29) , Eq. (3.24) becomes a set of J coupled ordinary

differential equations in the var iables a~ (t).  1 � i � j, which can be

solved numerically in straightforward ways. We consider again the two-

level discrete distribution in V, for which the following analytic

solution can be found, after much tedious algebra :

• 1~~(t)]~~ f~~(t)1
N2 1a~ (t)~~~ (t)1

2NlN2 
I?t \

L~4(0)J [a~ (o )J L~~
0
~~~

0
~ 

= exp~~—) (3.34)

r 11’ r -lQ r
Ia~

(t)1a
~(t)I Ia~

(t)1a~
(t)+l l Ia~

(t)/a
~
(t)_S I I?~\L a o  a~(0)j [~

ai(0)/a~
(0)+

~j L~~
0 a

~
0
~ 5j 

exP~~ç) (3.35)

where

N (14N )E
(3.36)

E 1 2

Q ~ 1 + 2N1N2, (3.37)

(E1
_E

2) 2(2N1N2+l)4e (E1~ E2 )?(N1~N2)_3~ 2

- (E1—E2)2 
— ‘ (3.38)
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E + E  - E 1.
s~~ ~ ~~~~~. (3.39)

This complicated solut ion can be shown to have the follow-

ing properties: (i) If condition (3.33) is satisfied, it tends

asymptotically to the completely self-similar solution of Eqs. (3.27)

and (3.32). (ii) If condition (3.33) is not satisfied, then a1(t) and

and a2(t) tend asymptotically toward exponential expansion, but at

diffe rent rates , with a1(t) expanding faster:

d 2 1
(I + N 2 )T3 

‘ (3. a)

(N -N )E
N T 

2 (3.~iOb)t 2 3

(iii) If condition (3.33) is not satisfied, and N1 ‘~~~~ 1 (so that

the beam component with V = V~ represents the “main beani~’), then

asymptotically in time a2 expands as if only the V part of the

beam were there ,

a~(t) 
~~~~~~~~ 

exp (
~

_), (3.41)

while a1 expands as discussed in Sec. IIIB,

a1
2(t) —s- exp 

~~~~~~~ 

(3.42)

(iv) The time scale for the approach to these asymptotic limits is

typically several times the tims scale for beam expansion ,

T3/E. Thus transient effects remain important until the beam has

34
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expanded cons iderably from its initial radius.

All of these features are illustrated in Fig. 5, where the

time evolution of various quantities is shown , for Cases 1, 3, 4 , and

5 of Table 1. The initial condition a1(0) = a2 (0) is used for all

cases. Plotted are the characteristic beam radius a(t), in the form

of the ratio of a2(t) to the value

a0
2(t) U a2(0) exp (~t/T3) (3.43)

predicted by the Nordsieck equation (2.28) for the completely self-

similar case, and the ratio al(t)/a2(t). (Also shown are several re-

sults of the model discussed in Sec. D.) It is seen that a2(t) /a 2(t)

is less than unity by a value that ranges from a few percent to — 3O~,

during a period when a2(t) e-folds many times. Thus we conclude that

Eq. (2.28) is quite an accurate representation of overall beam expan-

sion , even during the transient stage , and even for distributions N

that violate the requirement (2.43) for the existence of a comp letely

self—si milar solution. -

We note that the definition of a “characteristic beam radius”

is to some extent arbitrary for a multi-level distribution N
~

, since

the radial beas profile n(r,t) will have plateaus and wings, and in

general differ from a typical bell-shaped curve. This effect is most

pronounced for the two level distributions discussed here. The defini-

tion of a in Eq. (3.10) essentially reflects the evolution of the on—

axis density Nn(r = 0, t ) ,  a quantity of particular interest. Other

definitions of a “characteristic” beam radius would exhibit somewhat

35
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dtfferent behavior, e.g. a mean-square radius, defined by

a~~
2(t) ENiaj

2 (t) ,

would be larger than a 2 (t ) ,  by a few percent to a few tens of percen t ,

over the same time scale shown in Fig. 5.

In genera l , the model discussed in this section appears to

give reasonab le results , except for the time-asymptotic results in the

sensitive regime near the limits of applicability of the completely

self-similar solution. Thus we regard it as a useful model for approx-

imate calculations. In the next section, however , we develop a model

that is further s implified and easily solved , which retains many of the

desirable features.

D. Simpler Envelope ~iodel

In this section , we cons ider a simpler and more approximate

modei, within which it is possible to solve the general initial value

problem for a
~

(t )  in closed form for any distribution N
V 

(discrete or

continuous). The model gives the exact condition (2.43) for the exis-

tence of a completely self-similar solution, and in many cases agrees

well with the ratios a/a~
I for the exact, completely self-similar

solution, and with the time evolution found in the last section. We

• start by continuing to assume that n
V(rIaV

) takes one of the forms of

Eqs. (3.22a , b , or c),  but we adopt the simpler assumed form for the —

total beam density profile, -

(Case i) n(r , t) 
~a~ (t) exp (- a2(t))~ (3.44a)

LI 
_ _ _ _ _ _  
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1 1
(Case ii) n(r ,t)  i~a2 (t) S i  + r2/a2(t)~

2 ‘

(Ca se III) n(r , t)  =~~a~ (t~~(l 
+ r

0
2 (t)

) 

-1-r
0
2 ( t)/ a 2 ( t)  

(3.~~~c)

rather than by using the self-consistent prescription ,

n(r , t) = ~ dv n~(r,t). (3.45)

The choices (3.144), particularly (3.414-a) and (3.414b) are obvious~Ly

suggested approximate forms. In all three cases, we have then from

E~. (3 . 15 a) ,

a 2

D~
(t)  = a

~ 
a2 

(3.47)

instead of Eq. (3.23). Substituting in Eq. (3.1.4), a~
(t) is determined,

in terms of a ( t ) ,  by the ord inary differential equation ,

a

~~~

+a ~~~~~~~~~~~~~ 
~i (3.48)

instead of the integral-differential equation (3.24). Letting

y~ (t) 
n a

~
2 (t)Ia 2 ( t ) ,  (3.49)

E q. (3.48) can be put in the form

dy / E  y ‘t (l+y) 2
. ... ~ I ...L. _ V £~~~~~ 2 1  V (3 )
dt 

\ 
2T3 I + y

~ 
dt a 

/ 
2 +

Clearly, a complete ly self-similar solution , i.e. one with
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p

= 0, all ‘I , (3.51)

can occur if and only if

~~~ n a 2 constant , — (3.52 )

and

Y
V (~~~ 

~~ ena2 _ 
1) . (3.53)

Since there does not appear to be any obvious way to calculate ~

within this simple model (e.g. by setting a equa l to some obviously

appropriate average of a
~
), we appeal to the exact self-similar solu-

tion of Sec. IIB, which gave

a2 
. - (3 .54)

B -

Using Eq. (3.54) in Eq. (3.53) gives

~ V * 
-

= 
2~ fE  - I 2v - l~ 

(3.55)

Equation (3.55) has the correct qualitative properties of the exact corn-

pletely self-similar solution derived in Sec. IIB , i.e.: First , the

solution exists if and only if

V > ~~~, for all ‘I. (3.56)

- 4~~- -

Second,

a
~ ~~, for . (3.57)

- 
- 
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Third,

a
~ ~~~~~ V4. for ~~~~~~~~

)> 1 , (3.58)

as shown in Secs. IIC and IIIB. Fourth a
~ 

is a monotonically decreasing

function of V. in the range of applicability , v > ~~~. Plots of

Eq. (3.55) for two-level distributions 
~~ 

shown in Fig. 2 , agree well

with the exact solut ions when ~ 0.5 ,but not for v1/~2 = 0.25.
The latter is a very severe test. For actual continuous distributions

N
V
, the beam profile n (r )  will have a smoother shape, as assumed in

Eqs. (3.144) , and we would expect the model to give accurate results for

y .  Equation (3 .55)  can, of course, also be applied with ease to con-

tinuous or multi-level discrete distributions N , for which the exact
V

solutions become time-consuming and rather unilluminating.

• We consider next the solution of Eq. (3 .50), with general

initial conditions, in several limits. We note first that , if and on ly

if E~. (3.56) holds, the solution to Eq. (3.50), with any initial con-

ditions, asymptotically approaches the completely self-similar solu-

tion, Eq. (3.55). This assures us once again that the latter is the

physically significant solution. If inequality (3.56) is strongly

satisfied and y << 1, Eq. (3.50) reduces to the linear equation

- 

~ ~~~ 
~~~~ a2 , (3.59) 

—

whose general solution is

F •

‘
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Y V~~~~~~~(~~~~ f l a2 ) +  
[Y ~~

(o) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3.6c~)

Equat ion (3.6D ) reproduces the solution (2.59) found in Sec. IIC. As

a final limiting case , if Eq. (3 .56) fails for a particular value of

‘1, then Eq. (3.50) shows that y~ -‘ ~~, and moreover that for y~ >> I,

(3.61)

so that, from definition (3.149),

~~~~ a
~

2 
~ 

, (3.62)

in agreement with the generalized Nordsieck equation (3.16) derived in

Sec. IIIB for large v .

If (in the spirit of a first iteration), we use Eq. (3.54) in

(3 .50), even when the solution is not completely self-similar , then the

general initial value prob lem (3.50) for y
~
(t) can be solved in the

closed form,

/y  (t )  + l\ A 1 ACy (t) + i~~ + 1
T ~ ~ (,~y 1

(O) + 
l) A~~~ A[y

~
(O) + 1] + I (3.63)

where

A U -l + (2V 
~~~~ (3.64 )

-~ The solution (3.63) involves the distribution N ,,, only through E , and

~4O________ --5---
• 

- •
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‘
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thus can be applied to any form of N
~
. Plots of ~~(t), a1

2(t)/a2
2(t),

and a2(t)/a0
2(t) are shown in Fig . 5, for the two-level discrete dis-

tributions of Table 1, Cases 1, 3, 4, 5. We recall that a2(t) and

a
0
2(t) are as de fined in Eqs. (3. 10) and (3.143), i.e.

a2~t) ~~ 
(~~i + ~~~~

. \ -~~ 
, (3.65)

a0 (t) 
\
y1 y2/ -

a 2 (t) y1(t)

a~~ (t) y
2~~~ 

(3.66)

We note the excellent quantitative agreement between the results of the

present model and that of Sec. IIIC. It is particularly striking that

even in Case C, Fig. 5b , the asymptotic values of a1
2/a

2
2 for the two

models differ , but the time evolution is nonetheless almost identical

for a very long time.
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IV. Conclusions

We have shown that if the energy distribution of a self-pinched ,

relativistic beam is such that

(4.1)

for all beam particles, then the beam expands, under the inf luence of

scattering by the medium, in a completely self-similar manner after

an initial transient stage. In this case , the expansion was shown to

be at the rate

d
4
~~ n a 2 =~~

_ , (4 .2)

and exact solutions were found for the radial profiles

such that higher-energy particles are more localized near the beam

axis. Typically Eq. (4.1) is violated if the energy distribution

has a low-amplitude tail at small y. Particles which strongly violate

the inequality (4.1) were shown to expand more rapidly than the main

beam, at a rate that tends asymptotically to

E
.j.g~ 

2 _
~~~~ ‘4dt a

~ 2T
B~~

Two different approximate envelope equation models , of distinct

levels of sophistication and mathematical complexity , were developed

to determine the evolution of a~
(t) , the characteristic radius for

particles with energy nc2 y. The models were benchearked against the

~~~ exact results, where applicable. The genera l initial value problem

was studied for each of the envelop, models. The most important

-5 -
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conclusions were that a significant time , typically a few times

E/T
B
, is necessary to approach the asymptotic limits discussed above;

that the generalized Nordsieck equation (14.2) is quite accurate even

during this period, if (14.1) holds; that the expansion rate of a [de-

fined by Eq. (3.10) as a radius that characterizes the beam in the

sense that a2 is inversely proportional to the on—axis density] is lass j
than or equal to Eq. (4.2), but the disparity becomes large on ly if

(14.1) is violated and Et/TB ~ 2. In general, the nature of the evolu-

tion is that very low energy particles “evaporate” by rapid radial

expansion, while the main beam expands more or less according to

Eq. (4.2).

The principal assumption made was that the energy of any given

• beam particle is constant (although an initial energy spread among

different particles was assumed). It would be straightforward to in-

clude deterministic energy losses in these calculations, but difficult

to include, self-consistently, statistical energy loss mechanisms such

as bremsstrahlung emission, which continuously increase the energy

spread. In general, we expect that the effect of such mechanisms would

be to continuously generate low-energy particles, which evaporate,

thus slowly reducing the effective net current. In addition, the

left hand side of the generalized Nordsieck equations would be modified

in a way discussed by Lee and Cooper4, i.e. (d/dt ) 2n a~
2 would be re-

p laced by (d/dt) 
~ 
(~*~

2). Otherwise we do not expect that the main

conclusions of this paper would be changed markedly, although a quanti-

r - ~~~ 

5-

, eacive study of th. effects would be quite interesting.
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I
Table 1

N1 N2 
‘y’

1
~~

’ 5 -’~
’

2Case 1 2

1 0.2 0.8 0.25 0.4 1.6

2 0.2 0.8 0.5 0.6 1.2

3 0.8 0.2 0.25 0.85 3.14

14 0.5 0.5 0.5 0.75 1.5

5 0.5 0.5 0.75 0. &75 1.167

Some two level distributions that are used as examp les in our numerical

calculations.
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FIg. 1 — Plots of the function 0(x) for several cases. The uppermost
curve is a Bennett profile, included for comparison. The other curves,
reading down from the top, are 0(x) for Cases 5, 2,4, and 3 of Table 1.
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FIg. 2 — Plots of the ratio of characteristic radii a1 /a2, for discrete two.level dis-.
- • tributions over y, according to the completely self-similar solutions. The horizon-

tal axis is the fraction of particles with 
~ ‘ - ~~~, and the ratio ‘

~~~ 
is a parameter

with the values 0.75, 0.5, and 0.25. The short-dashed curves are the exact solu.
tions of Sec. fiB , the solid curves are the approximate results of Eq. (3.32), and
the long-dashed curves are the approximate results of Eq. (3.55). For 71/7 2
0.75, the three curves are virtually indi,tinguishable.
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Fig. 3 — Radial profile of each of the two energy components, n1 (x ) and
n2(x) , according to the exact self-similar solution, for four cases listed in
Table 1.
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FIg. 4 — Radial profile of beam particles, n(x), for four cases listed in Table 1. . 4

The solid curve is the exact self-similar solution. The short-dashed curve is a
Bennett profile, shown for comparison. The long-dashed curves are the approxi-
mate results of Eq. (3.32), with the additional assumption that the profiles of
each of the two energy components, n1(x) and n2 (x), are Gaussian.
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